Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Am Heart Assoc ; 9(21): e017773, 2020 11 03.
Article in English | MEDLINE | ID: covidwho-889990

ABSTRACT

Background Recent literature reports a strong thrombotic tendency in patients hospitalized for a coronavirus disease 2019 (COVID-19) infection. This characteristic is unusual and seems specific to COVID-19 infections, especially in their severe form. Viral infections can trigger acquired thrombophilia, which can then lead to thrombotic complications. We investigate for the presence of acquired thrombophilia, which could participate in this phenomenon, and report its prevalence. We also wonder if these thrombophilias participate in the bad prognosis of severe COVID-19 infections. Methods and Results In 89 consecutive patients hospitalized for COVID-19 infection, we found a 20% prevalence of PS (protein S) deficiency and a high (ie, 72%) prevalence of antiphospholipid antibodies: mainly lupus anticoagulant. The presence of PS deficiency or antiphospholipid antibodies was not linked with a prolonged activated partial thromboplastin time nor with D-dimer, fibrinogen, or CRP (C-reactive protein) concentrations. These coagulation abnormalities are also not linked with thrombotic clinical events occurring during hospitalization nor with mortality. Conclusions We assess a high prevalence of positive tests detecting thrombophilia in COVID-19 infections. However, in our series, these acquired thrombophilias are not correlated with the severity of the disease nor with the occurrence of thrombotic events. Albeit the strong thrombotic tendency in COVID-19 infections, the presence of frequent acquired thrombophilia may be part of the inflammation storm of COVID-19 and should not systematically modify our strategy on prophylactic anticoagulant treatment, which is already revised upwards in this pathological condition. Registration URL: https://www.clini​caltr​ials.gov; Unique identifier: NCT04335162.


Subject(s)
Antiphospholipid Syndrome/epidemiology , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Protein S Deficiency/epidemiology , Thrombosis/epidemiology , Aged , Antibodies, Antiphospholipid/blood , Antiphospholipid Syndrome/blood , Antiphospholipid Syndrome/diagnosis , Biomarkers/blood , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Female , France/epidemiology , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Prevalence , Prognosis , Protein S/analysis , Protein S Deficiency/blood , Protein S Deficiency/diagnosis , Risk Factors , Severity of Illness Index , Thrombosis/blood , Thrombosis/diagnosis
2.
Clin Pharmacol Ther ; 108(5): 1090-1097, 2020 11.
Article in English | MEDLINE | ID: covidwho-615066

ABSTRACT

Association between Hydroxychloroquine (HCQ) and Azithromycin (AZT) is under evaluation for patients with lower respiratory tract infection (LRTI) caused by the Severe Acute Respiratory Syndrome (SARS-CoV-2). Both drugs have a known torsadogenic potential, but sparse data are available concerning QT prolongation induced by this association. Our objective was to assess for COVID-19 LRTI variations of QT interval under HCQ/AZT in patients hospitalized, and to compare manual versus automated QT measurements. Before therapy initiation, a baseline 12 lead-ECG was electronically sent to our cardiology department for automated and manual QT analysis (Bazett and Fridericia's correction), repeated 2 days after initiation. According to our institutional protocol (Pasteur University Hospital), HCQ/AZT was initiated only if baseline QTc ≤ 480ms and potassium level> 4.0 mmol/L. From March 24th to April 20th 2020, 73 patients were included (mean age 62 ± 14 years, male 67%). Two patients out of 73 (2.7%) were not eligible for drug initiation (QTc ≥ 500 ms). Baseline average automated QTc was 415 ± 29 ms and lengthened to 438 ± 40 ms after 48 hours of combined therapy. The treatment had to be stopped because of significant QTc prolongation in two out of 71 patients (2.8%). No drug-induced life-threatening arrhythmia, nor death was observed. Automated QTc measurements revealed accurate in comparison with manual QTc measurements. In this specific population of inpatients with COVID-19 LRTI, HCQ/AZT could not be initiated or had to be interrupted in less than 6% of the cases.


Subject(s)
Azithromycin , Coronavirus Infections , Drug Monitoring , Electrocardiography/methods , Hydroxychloroquine , Long QT Syndrome , Pandemics , Pneumonia, Viral/drug therapy , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/adverse effects , Anti-Infective Agents/pharmacokinetics , Azithromycin/administration & dosage , Azithromycin/adverse effects , Azithromycin/pharmacokinetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/physiopathology , Dimensional Measurement Accuracy , Drug Monitoring/instrumentation , Drug Monitoring/methods , Drug Monitoring/standards , Female , Humans , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/adverse effects , Hydroxychloroquine/pharmacokinetics , Long QT Syndrome/chemically induced , Long QT Syndrome/diagnosis , Male , Middle Aged , Outcome Assessment, Health Care , Pneumonia, Viral/diagnosis , Pneumonia, Viral/physiopathology , SARS-CoV-2 , Torsades de Pointes/chemically induced , Torsades de Pointes/prevention & control , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL